Reaction of dichromate and chlorine in acidic solution

 Write two skeleton partial reactions and balance atoms <u>other</u> than hydrogen and oxygen.

> $\operatorname{Cr}_2 \operatorname{O}_7^{2^-} \rightarrow 2\operatorname{Cr}^{3^+}$ $2\operatorname{Cl}^- \rightarrow \operatorname{Cl}_2$

2. Balance H and O atoms by adding $\rm H_2O$ to the side deficient in oxygen and $\rm H^{\scriptscriptstyle +}$ to the side deficient in hydrogen.

$$14H^{+} + Cr_{2}O_{7}^{2^{-}} \rightarrow 2Cr^{3^{+}} + 7H_{2}O$$
$$2Cl^{-} \rightarrow Cl_{2}$$

3. Balance each half-reaction electrically using electrons.

 $6e^{-} + 14H^{+} + Cr_{2}O_{7}^{2^{-}} \rightarrow 2Cr^{3^{+}} + 7H_{2}O$ $2Cl^{-} \rightarrow Cl_{2} + 2e^{-}$

4. Obtain the same number of electrons gained by one halfreaction and lost by the other half-reaction by multiplying by the appropriate factors. (In this example, the least common multiple of 6 and 2 is 6 and so the second halfreaction is multiplied by 3.

 $6e^{-} + 14H^{+} + Cr_{2}O_{7}^{2-} \rightarrow 2Cr^{3+} + 7H_{2}O$ $6Cl^{-} \rightarrow 3Cl_{2} + 6e^{-}$

5. Add partial equations to get final equation and cross off identical species on each side.

 $14H^{+} + 6Cl^{-} + Cr_2O_7^{2-} \rightarrow 2Cr^{3+} + 3Cl_2 + 7H_2O$

Ion-electron Method/Acid Solution Example 2

 $\rm As_4O_6$ reacts with $\rm MnO_4^-$ to produce $\rm H_3AsO_4$ and $\rm Mn^{2+}$

1. Write skeleton partial equations for half reactions.

$$MnO_4^{-} \rightarrow Mn^{2+}$$

 $As_4O_6^{-} \rightarrow 4H_3AsO_4^{-}$

2. Add H^+ and H_2O .

 $8H^{+} + MnO_{4}^{-} \rightarrow Mn^{2+} + 4H_{2}O$ $10H_{2}O + As_{4}O_{6} \rightarrow 4H_{3}AsO_{4} + 8H^{+}$

3. Balance net charges via electrons.

 $5e^{-} + 8H^{+} + MnO_{4}^{-} \rightarrow Mn^{2+} + 4H_{2}O$ $10H_{2}O + As_{4}O_{6} \rightarrow 4H_{3}AsO_{4} + 8H^{+} + 8e^{-}$

4. Multiply each equation through by appropriate factor to balance electrons gained with electrons lost.

 $40e^{-} + 64H^{+} + 8MnO_{4}^{-} \rightarrow 8Mn^{2+} + 32H_{2}O$

 $50H_2O + 5As_4O_6 \rightarrow 20H_3AsO_4 + 40H^+ + 40e^-$

5. Add equations and cancel what is possible from each side.

 $24H^{+} + 18H_{2}O + 5As_{4}O_{6} + 8MnO_{4}^{-} \rightarrow 20H_{3}AsO_{4} + 8Mn^{2+}$

Ion-electron Method/Alkaline Solution

For alkaline solutions, all the steps are the same as in acid solution except the second one. H^+ <u>cannot</u> be used. The following reaction takes place in alkaline solution.

1. $\operatorname{Cr}(OH)_{6}^{3-} \rightarrow \operatorname{CrO}_{4}^{2-}$

 $HO_2^- \rightarrow OH^-$

2. For reactions occurring in alkaline solution, OH^- and H_2O are used to balance oxygen and hydrogen. For each oxygen that is needed, $2OH^-$ ions are added to the side of the partial equation that is deficient, and one H_2O molecule is added to the opposite side. For each hydrogen that is needed, one H_2O molecule is added to the side that is deficient, and one OH^- is added to the opposite side.

In the first partial equation, the right side is deficient by 2 oxygen atoms. We add, therefore, $40H^2$ to the right side and $2H_2O$ to the left. This addition takes care of oxygen balance only.

$$2H_2O + Cr(OH)_6^{3-} \rightarrow CrO_4^{2-} + 4OH^{-}$$

We need (as we originally needed) 6 more hydrogen atoms on the right and therefore add $6H_2O$ to the right and $6OH^-$ to the left.

 $6OH^{-} + 2H_2O + Cr(OH)_6^{3-} \rightarrow CrO_4^{2-} + 4OH^{-} + 6H_2O$

We can consolidate our additions:

 $2OH^{-} + Cr(OH)_{e}^{3-} \rightarrow CrO_{4}^{2-} + 4H_{2}O$

The second partial equation is brought into material balance by the addition of $20H^{-}$ to the right and one H_2O to the left.

$$H_2O + HO_2 \rightarrow 3OH$$

3. $2OH^{-} + Cr(OH)_{6}^{3-} \rightarrow CrO_{4}^{2-} + 4H_{2}O + 3e^{-}$

 $2e^{-}$ + H_2O + HO_2^{-} \rightarrow $3OH^{-}$

4. $4OH^- + 2Cr(OH)_6^{3-} \rightarrow 2CrO_4^{2-} + 8H_2O + 6e^-$

 $6e^{-} + 3H_2O + 3HO_2^{-} \rightarrow 9OH^{-}$

5. $2Cr(OH)_{6}^{3^{-}} + 3HO_{2}^{-} \rightarrow 2CrO_{4}^{2^{-}} + 5H_{2}O + 5OH^{-}$

Ion-electron Method/Disproportionation or Auto-Oxidation-Reduction Reactions.

5

Consider the following skeleton equation for a reaction in alkaline solution.

 $Br_2 \rightarrow BrO_3^{-} + Br^{-}$

In this reaction, the same substance, $\mbox{Br}_{\scriptscriptstyle 2},$ is both oxidized and reduced.

1.			Br_2	\rightarrow	2BrO ₃ -				
			Br_2	\rightarrow	2Br				
2.	120H-	+	Br_2	\rightarrow	2BrO ₃ -	÷	6H ₂ O		
			Br_2	\rightarrow	2Br				
3.	120H-	+	Br_2	\rightarrow	2BrO ₃ -	+	6H ₂ O	+	10e ⁻
	2e ⁻	+	Br_2	\rightarrow	2Br				
4.	120H ⁻	+	Br_2	\rightarrow	2BrO ₃	+	6H ₂ O	+	10e ⁻
	10e ⁻	+	5Br ₂	\rightarrow	10Br ⁻				
5.	120H ⁻	+	6Br ₂	\rightarrow	2BrO ₃ ⁻	+	10Br ⁻	+	6H ₂ O

Oxidation number method for balancing reactions

For the reaction: $HNO_3 + H_2S \rightarrow NO + S + H_2O$

- 1) Identify and write oxidation numbers of elements undergoing oxidation or reduction. 5_{+} 2_{-} 2_{+} 0 HNO_{3} + $H_{2}S \rightarrow NO$ + S + $H_{2}O$
- 2) Use coefficients to make the **total** decrease in oxidation number equal to the total increase in oxidation number.

N goes from 5+ to 2+, a change of -3 S goes from 2- to 0, a change of +2

Therefore, the nitrogen compounds take a coefficient of 2 and the sulfur a coefficient of 3.

 $2HNO_3 + 3H_2S \rightarrow 2NO + 3S + H_2O$

3) Complete by inspection.

 $2HNO_3 + 3H_2S \rightarrow 2NO + 3S + 4H_2O$

- Charge and atoms of each element must balance

This method may be used for net or ionic equations , in which only those ions and molecules that actually take part in the reaction are shown. For example, the K⁺ ion does not take part in the reaction of potassium chlorate, KClO₃, with iodine and is not shown in the equation.

1) H_2O + I_2 + $ClO_3^- \rightarrow IO_3^-$ + Cl^- + H^+

I: 0 to 5+, change of 5+ x 2(for each atom) = 10+

(Each iodine atom undergoes an increase of 5 so the total change in oxidation number here is 10+)

Cl: 5+ to 1-, change of 6- = 6-

Least common multiple is 30

2) $H_2O + 3I_2 + 5ClO_3 \rightarrow 6IO_3 + 5Cl^+ + H^+$

3) Ignoring H_2O , there are now 15 oxygen atoms on the left and 18 oxygen atoms on the right. To make up 3 oxygen atoms on the left, $3H_2O$ molecules must be indicated. It then follows that the coefficient of H^+ must be 6 to balance the hydrogens of the H_2O molecules.

 $3H_2O + 3I_2 + 5ClO_3^- \rightarrow 6IO_3^- + 5Cl^- + 6H^+$

An ionic equation must indicate change balance as well as mass balance. Since the algebraic sum of charges on the left, 5-, equals that of the right, 5-, the equation is balanced.